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Discovery of nuclear fission

lda Noddack suggested that uranium nuclei might
break up under neutron bombardment in 1934.

Hahn and Strassmann, 1938: Neutron irradiation of
uranium produces barium.

Communicates results to Lise Meitner, who is in
Sweden as a war refugee.

Lise Meitner and her nephew Otto Frisch explains
the result as nuclear fission, makes estimate of
energy release.

Frisch uses uranium-lined ionization chamber and
radium beryllium source to confirm fission.
[Nature 143, p. 276 (1939)]

Hahn receives the Nobel price in chemistry in 1944
for the discovery of fission
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Fission experiments — what can we
measure? Independent Cumulative

yields
Product properties v
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Cross sections
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Fission fragment mass
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J. Lestone, Nuclear Data Sheets 112, 3120 (2011)
Actinides generally exhibit asymmetric mass distributions, with small symmetric
component

Heavy peak about the same for all actinides, light peak shifts to make up for
difference in compound system mass

Relative contribution from symmetric fission increases with increasing excitation
energy UNCLASSIFIED Slide®
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Fission fragment charge
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Fig. 1: Charge distribution in (ng,.f) of #*U and **°Pu Fig. 2: Even-odd effect 6, vs Z of CN nucleus

F. Gonnenwein, Physics Procedia 47, 107 (2013)

Fission fragment charge distributions exhibit
strong odd-even effects

Effect decreases with increasing mass of the
fissioning system
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Fission fragments — kinetic energies

Total kinetic energy Fragment distributions
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Most energy released in fission is in the form of kinetic energy of the fission fragments

Total kinetic energy (TKE) release is about 160-180 MeV (on average)

Decreases with increasing incident neutron energy — more energy goes to excitation of
fragments

TKE distribution have a FWHM of about 25 MeV

Light fragment has more narrow distribution of kinetic energies than heavy fragment
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Fission fragment angular distributions

Fission fragments angular
distributions are generally not
isotropic in neutron-induced
fission

Experimental data often

presented at anisotropy (w(0)/
w(90))

Detailed measurements in 1950s
of several isotopes, 0-10 MeV

J. E. Simmons et al., Phys. Rev. 120, 198 (1960)
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Prompt Neutrons

N. Nereson, Los Alamos Sci. Lab. Report #LA-1078 (1950) T. Ethvignot et al., Phys. Rev. Lett. 94, 31 (2005)
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Prompt gamma rays

Chyzh et al., Physical Review C 85, 021601 (2012)
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Gamma ray multiplicity is high in
fission, 7-8 on average

Most individual gamma rays are <1
MeV

Average energy released per
fission is about 6-7 MeV
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Neutron facilities — reactors

Reactors are intense sources of
thermal neutrons

ILL high-flux reactor produces
10" neutron per cm? and second

in the moderator region

Some experiments can only be
performed at reactors
The Lohengrin fission product
spectrometer provides excellent
data, but low efficiency require
high fission rates

Horizontal deflection

Source Fission Fuel
changing unit products|  element

Target
posifion

Disadvantage of reactor experiments
is that we often want to study
changes in the fission process as a
function of excitation energy
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Neutron facilities — mono-energetic

Mono-energetic neutrons can be made through several reactions
Li(p,n)
2H(d,n)*He
3H(p,n)3He
3H(d,n)*He
Van de Graaff accelerators are often used to produce mono-energetic

neutrons
Example: 7 MV VdG at IRMM, Geel, Belgium

Produces mono-energetic neutron beams from 0.1 to 24 MeV

Other accelerators, such as cyclotrons, are also used to produce mono-
energetic neutrons
Example: The Svedberg Laboratory, Uppsala Univ., Sweden
High energy mono-energetic neutrons made through Li(p,n)
Neutron energies are 0 — 200 MeV

UNCLASSIFIED
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Neutron facilities — time-of-flight

White spectrum of neutrons is produce by pulsed beam

Energy of neutrons are determined by measuring the time-of-flight (TOF) over some flight path

Electron beam facilities
GELINA
Linear electron accelerator, 100 MeV, 800 Hz repetition rate, 10 ns wide pulses
Uranium target: electron beam produces bremsstrahlung, photonuclear reactions make neutrons
Flight path lengths are 10, 30, 50, 60, 100, 200, 300 and 400 meters
Spallation facilities

Neutrons produced when high energy ion beam hits high-Z material
Makes neutrons ranging from 0 to hundreds of MeV
LANSCE-WNR

800 MeV proton beam on tungsten (wolfram) target
Flight pats 6 — 25 meters

1.8 us repetition rate -> lower neutron energy limit is about 100 keV

N_TOF

20 GeV proton beam hit lead target
20 and 200 meter flight paths

0.5 Hz repetition rate -> usable neutron spectrum for thermal to hundreds of MeV
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Fragment detectors — gas

Practical Gaseous lonisation Detector Regions

Variation of ion pair charge with applied voltage in a wire cylinder system with constant incident

radiation.

Onset of continuous

discharge
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Fragment detectors — ion chambers

Parallel plate ionization chambers
Signal proportional to energy and angle
Fragments don’t range out
Good alpha particle to fission separation

Bragg chamber (Frisch-gridded)
Anode shielded by grid
Signal directly proportional to energy, independent of angle
The grid signal can be used to measure particle emission angle
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Fragment detectors — proportional
counters

AN
/ —{>_J\

Parallel Plate Avalanche Counter (PPAC)
30% energy resolution for fission
Very fast timing response (<1ns)

Muli-wire proportional chamber (MWPC)
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Fragment detectors — TPC

lonizing Track

Drifting Electrons

L |
L/ '. L . Charge
L) 7 & 8 Deposited

5§ NN

Segmented Plate

Provides 3D particle
tracking

Energy resolution of few
percent
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Fragment detectors — Surface barrier

Relative good energy resolution for fission fragments: 2%
Higher pulse height defect compared to gas detectors
Sometime segmented to provide position information

Solar cells have been used to detect fission fragments — low cost
fission trigger

Passivated Implanted
Planar Silicon (PIPS)
Detector from Canberra
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Fission fragment — Time-of-flight

A.V. Kuznetsov, Nucl. Inst. Meth. A 452, 525 (2000)
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Ceramic motherboard L)
Time signal can be obtained by detecting the secondary electrons produced
when fission fragments pass through thin film

Micro-channel plates (MCP) commonly used to detect secondary electrons due
to fast timing response (0.2-2 ns rise time)
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Mass separators

Masses are selected
using electromagnetic
fields

Flectric condenser field

Horizontal deflection

Source Fission Fuel
changing unit produds|  element

Vertical deflection

Target
position

Reactor wall
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Neutron detectors — High Energy

Plastic or liquid scintillators are used to detect fast neutrons
Neutrons interacts with protons in the scintillating material
Photons undergo Compton scattering on electrons

The charged particles excite molecules in the scintillator, and they subsequently
de-excite by emitting visible light

The photons cases a cascade of electrons in the photomultiplier tube through the
photo-electric effect

Some scintillators, such as NE213, exhibit different signal decay times for
neutrons and photons, which can be used to separated the two types pf radiation

NE213 neutron detection efficiency

NE213 response for different
radiation types 0.40

2
T T T 7
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Fast neutrons

Gamma rays
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Neutron detectors — Low energy

He-3 tubes BF; chambers
[ ) & @
n @ ielium 3 (He3) Neutron Detector OB +n—"Li+qa
Q-values:
2.79 MeV (Liin
excited state)
n+ He; — p + e+ Hez* .
° ® 2.31 MeV (Liin

ground state)

Insensitive to gamma

2.31 MeV

Li-glass

°Li+n—3He +a
Q-value: 4.78 MeV

Have found new use
in fibers

rays

Highly efficient for S i

thermal neutrons

Shortage of 3He is | %"
effecti ng ava ilabil ity Puise Sine (energy deposited in deteéor)
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State of the art and future development

Inverse kinematics
Excellent mass and charge resolution
GSI| measurements

New spectrometer
FRIB

2E-2v instruments
Some masses and charges resolved
Cosi-fan-tuti (1980’s)
SPIDER, STEFF, VERDI, ...

Time projection chambers (TPC)
Tracking opens up new possibilities
New technology brings cost down

New neutron facilities
N_Tof
LANSCE with pulse stacking
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Inverse kinematics - GSI
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Demonstrates the regions on the
nuclear map where transition from

asymmetric to symmetric fission occur Slide 25
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Inverse kinematics — SOFIA
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G. Boutoux et al., Physics Procedia 47, 166 (2013)

Inverse kinematic with mass and charge
identification of fission fragments
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2E-2v — Cosi-fan-tutte

a neutron colhmator
b neutron pipe

¢ beam catcher

d 2/10mm Al window
e fissile target

f  target holder

N. Boucheneb et al.,
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) turbo pumps

k “start coax timing detector

I “stop” coax timing detector

Neutron induced fission

NPA 502, 261 (1989)

Energy and velocity of fragments measured

Light fragments resolved
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- SPIDER

Relative high efficiency
(0.2%)

Development ongoing
to reduce energy
straggling in windows

TOF Data and Simulation
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2E-2v - STEFF

2E-2v spectrometer combined
with gamma-ray detectors

Currently at ILL
Plan to run at n_TOF

Mass resolution 3%
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The fission TPC
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Developed for high

precision cross sections

Other potential uses
Ternary fission
Angular distributions

R B e

!
8!
@

s
5%

o3¢

-

M. Heffner, D.M. Asner, R.G. Baker, el al., A Time Projection Chamber for High Accuracy and Precision —
Fission Cross Section Measurements, submitted to Nucl. Instr. and Meth. N —
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Questions?

“Mr. Osborne, may | be excused?
My brain is full.”
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